Blog

Tri

Le tri par sélection est un algorithme de tri par comparaison. Cet algorithme est simple, mais considéré comme inefficace car il s’exécute en temps quadratique en le nombre d’éléments à trier, et non en temps pseudo linéaire.

En informatique, le tri par insertion est un algorithme de tri classique. La plupart des personnes l’utilisent naturellement pour trier des cartes à jouer.

En général, le tri par insertion est beaucoup plus lent que d’autres algorithmes comme le tri rapide (ou quicksort) et le tri fusion pour traiter de grandes séquences, car sa complexité asymptotique est quadratique.

Le tri par insertion est cependant considéré comme le tri le plus efficace sur des entrées de petite taille. Il est aussi très rapide lorsque les données sont déjà presque triées. Pour ces raisons, il est utilisé en pratique en combinaison avec d’autres méthodes comme le tri rapide.

En programmation informatique, on applique le plus souvent ce tri à des tableaux. La description et l’étude de l’algorithme qui suivent se restreignent à cette version, tandis que l’adaptation à des listes est considérée plus loin.

En informatique, le tri fusion est un algorithme de tri par comparaison stable. Sa complexité temporelle pour une entrée de taille n est de l’ordre de n log n, ce qui est asymptotiquement optimal. Ce tri est basé sur la technique algorithmique diviser pour régner. L’opération principale de l’algorithme est la fusion, qui consiste à réunir deux listes triées en une seule. L’efficacité de l’algorithme vient du fait que deux listes triées peuvent être fusionnées en temps linéaire.

Le tri fusion se décrit naturellement sur des listes et c’est sur de telles structures qu’il est à la fois le plus simple et le plus rapide. Cependant, il fonctionne aussi sur des tableaux. La version la plus simple du tri fusion sur les tableaux a une efficacité comparable au tri rapide, mais elle n’opère pas en place : une zone temporaire de données supplémentaire de taille égale à celle de l’entrée est nécessaire (des versions plus complexes peuvent être effectuées sur place mais sont moins rapides). Sur les listes, sa complexité est optimale, il se montre très simplement et ne requiert pas de copie en mémoire temporaire.

En informatique, le tri rapide ou tri pivot (en anglais quicksort) est un algorithme de tri inventé par C.A.R. Hoare en 1961 et fondé sur la méthode de conception diviser pour régner. Il est généralement utilisé sur des tableaux, mais peut aussi être adapté aux listes. Dans le cas des tableaux, c’est un tri en place mais non stable.

La complexité moyenne du tri rapide pour n éléments est proportionnelle à n log n, ce qui est optimal pour un tri par comparaison, mais la complexité dans le pire des cas est quadratique. Malgré ce désavantage théorique, c’est en pratique un des tris les plus rapides, et donc un des plus utilisés. Le pire des cas est en effet peu probable lorsque l’algorithme est correctement mis en œuvre et il est possible de s’en prémunir définitivement avec la variante Introsort.

Le tri rapide ne peut cependant pas tirer avantage du fait que l’entrée est déjà presque triée. Dans ce cas particulier, il est plus avantageux d’utiliser le tri par insertion ou l’algorithme smoothsort.

Implémentation des algorithmes Ci-dessus en JAVA: